Towards a new approach to assess grassland restoration potential: can we use vegetation spectra to track soil phosphorus availability?

Iris Moeneclaey - Ghent University
Supervisors: Lander Baeten & Kris Verheyen
Problem statement

Species-rich seminatural grasslands *
→ two big trends in Europe since 1960’s
 • Land abandonment
 • Intensification
→ large scale degradation

* Dengler et al., 2014; Walker et al., 2004
Problem statement

Species-rich seminatural grasslands
→ two big trends in Europe since 1960’s
 • Land abandonment
 • Intensification
→ large scale degradation

Need for restoration!! *
Problem statement

• High soil P-levels reduce biodiversity*
 • grassland productivity ↑
 • competitive interactions ↑

→ Soil P determines restoration potential!

* Wassen et al., 2005; Ceulemans et al., 2014; van Dobben et al., 2017
Can we use vegetation spectra to track soil phosphorus availability?
Can we use vegetation spectra to track soil phosphorus availability?
Can we use vegetation spectra to track soil phosphorus availability?

hypotheses

Intro
Set-up

Mesocosm experiment
Communities of typical grassland species*
→ grown on P-gradient
→ 2 scenarios: with biota or no biota added

*Nardus grasslands, habitat code 6230
Soil P
- bio-available soil P (Olsen P)

Plant P
- Spectrally derived P = NIRS
- Chemically derived ‘wet lab’ total P
NIRS = near infrared reflectance spectroscopy

Reducing sample quantity and maintaining high prediction quality of grassland biomass properties with near infrared reflectance spectroscopy
Pilot study - results

vegetation P

concentration (mg/kg)

stock (mg)

no biota added

biota treatment

bioavailable soil P (Olsen P) (mg/kg)

Moenclaey et al. (in prep)
Pilot study - results

vegetation P

concentration (mg/kg)

no biota added

biota treatment

Biomass effect!!!

bioavailable soil P (Olsen P) (mg/kg)

Moenclaey et al. (in prep)
B) vegetation P
link biochemical ~ spectral

Pilot study - results

no biota added

biota treatment

Chemical P concentration (mg/kg)

Moeneclaey et al. (in prep)
Pilot study - results

link soil P – spectral P

no biota added

biota treatment

bioavailable soil P (Olsen P) (mg/kg)

Moenclaey et al. (in prep)
Conclusion

expectations

hypotheses

reality

results

A

spectral
signature

B

biochemical
signature

soil nutrients

A

B

+/-
Conclusion

expectations hypotheses

reality results

spectral signature
biochemical signature
soil nutrients

A
B
Can we use vegetation spectra to track soil phosphorus availability?

- NIRS P – soil P link!
 ➔ physiological basis?

- Factors constraining the links
 ➔ biota effect
 ➔ noise on chem-spec link
 ➔ biomass effect
 ➔ species-specific responses
Thank you!